Feed-aggregator

Europe starts manufacturing the ITER Pre-Compression Rings

F4E News - vr, 22/03/2019 - 01:00
F4E and CNIM deploy workforces, expertise and a lot of pultruded laminate.

DEMO unveiled

F4E News - di, 19/03/2019 - 01:00
F4E and EUROfusion offer a sneak preview of the fusion power plant that could generate more than 100 MW of net electricity.

Cryostat | Lower cylinder revealed

ITER - ma, 18/03/2019 - 18:16

They were all there: those who designed it, those who forged it, those who assembled and welded it, and those who closely monitored the requirements and procedures connected with a "safety important" component. Two years after an array of segments were delivered to ITER, the cryostat lower cylinder—one of the four sections that form the giant thermos that will enclose the machine — had been fully assembled. With scaffolding removed and just a thin translucent film to protect it, the massive structure was at last revealed, both delicate and mighty.
"This is the largest component that will go into the machine assembly pit," said Patrick Petit, ITER In-Cryostat Assembly Section leader. "It is also an example of broad and exemplary collaboration."
Like the other sections of the cryostat, the realization of the lower cylinder epitomizes the larger collaborative nature of ITER: designed by the ITER Organization, forged in India, it was assembled and welded by a German company under contract to India on international territory conceded by France.
"The realization of this component was not a single person's job," said Anil Bhardwaj, ITER Cryostat Group leader. "It has been quite a serious task for all of us, with a large variety of challenges, particularly regarding fitment and welding quality" added Vikas Dube, a mechanical engineer in his team, "and although there were lots of lessons learned, we will face them again when we commence the assembly and welding of the upper cylinder in the coming months."
Read more about the fabrication of the ITER cryostat here.

Seven solutions develops software and hardware that enhance the operation of accelerators

F4E News - wo, 13/03/2019 - 01:00
How a fusion project in Japan motivated a Spanish SME to set a new a benchmark.

Divertor cassette bodies | Four years from prototypes to series

ITER - ma, 11/03/2019 - 17:21


Hell is a balmy place when compared to the environment of a divertor cassette body. In the vicinity of this ITER component, heat loads will be comparable to those at the surface of the Sun, and radiation will be almost as intense as in the neighbourhood of a neutron star. Cassette bodies will also have to resist the huge mechanical forces that will be exerted for a few tens of milliseconds in the event of a severe plasma disruption. Rarely—even in the space or nuclear industries—has a component posed so many fabrication challenges.
From its strategic position at the bottom of the vacuum vessel, the ITER divertor is the component that will extract the heat and the helium ash from the burning plasma. The divertor is made up of 54 individual "cassette assemblies" arranged in a circle—each one formed from a structural backbone (the cassette body), actively cooled plasma-facing elements (the "targets" and the "dome"), and diagnostic systems.
Cassette bodies are massive and contorted structures that weigh close to 5 tonnes. Prototype manufacturing began in 2013 under two contracts awarded by the European Domestic Agency, Fusion for Energy; five years later the Italian company Walter Tosto and the Italian-French consortium CNIM-SIMIC had each finalized a real-size, fully functional prototype, opening the way for series production to begin.
Under fabrication contracts signed in November last year with Fusion for Energy for the first 19 divertor cassette bodies, Walter Tosto will manufacture 15 cassette bodies and CNIM-SIMIC another 4—all for delivery by 2024. The order for the remaining 39 cassettes (including 4 spares) will be awarded at a later stage, as the divertor is not needed for the initial stages of ITER operation.
"Going from prototype to series manufacturing is a highly symbolic and rather moving moment for us," says Frédéric Escourbiac, ITER Divertor Section leader. "It is the culmination of seven years of hard work on detailed design development and on the demonstration of manufacturing feasibility. These actions were particularly demanding in terms of collaborative efforts with Fusion for Energy and their industrial partners."
"Series," however, does not mean "uniform": the 19 cassette bodies in the first production batch are of the "standard" type. The remaining 39 will present some added complexity, such as specific cooling for diagnostic systems or operational instrumentation, or specialized "cut-outs" for open lines of sight for neutron cameras.
"At ITER, we are used to dealing with systems that do not fit in the typical categories of industrial equipment," explains Laurent Ferrand, the ITER Technical Responsible Officer for the cassette bodies Procurement Arrangement. "When you first look at the technical specifications, what you see is a massive, complex stainless steel structure with lots of welds and very stringent welding and inspection requirements. But of course, it's much more than that ..."
Tolerances on the cassette bodies are sub-millimetric, which is quite standard for ITER but a huge challenge for such a massive component with moving parts. Leak-tightness is an even bigger challenge: "The prototypes were leak-tested at dedicated satellite facilities in Cannes, France, and Pisa, Italy. The engineers there were quite impressed by the 'ITER leak-tight' requirements—our criteria for a component like a cassette body are several orders of magnitude tighter than those for a satellite's fuel tank, for example."
Despite these considerable constraints and difficulties, Walter Tosto and CNIM-SIMIC took up the challenge, worked their way faultlessly through the prototyping phase, and produced fully functional components. The (numerous) lessons learned will be of great value for the series manufacturing phase.
Plasma-facing components and auxiliary systems will eventually be attached to the cassette body to form an 8-tonne cassette assembly that will be positioned within tenth-of-millimetre tolerances in order to be perfectly aligned with the machine's magnetic axis.
As minute variances during the manufacturing process and assembly of the vacuum vessel are inevitable, the positioning of the cassette assemblies, and hence of the whole divertor, will need to "recover" these slight departures from nominal dimensions and positions—a feat that will be achieved by custom machining the rail sections to which the cassette assemblies will be attached as well as all the interfacing elements between the divertor and the vacuum vessel structure.

HTS current leads | China launches series production

ITER - ma, 04/03/2019 - 18:52


Because they reduce the input power requirement for plant operation, high-temperature superconducting (HTS) current leads are one of the enabling technologies (together with superconducting magnets) for large-scale fusion power plants. First driven by the high-energy physics accelerator community, the development of high-current HTS leads is now being pushed by magnetic confinement fusion towards larger currents. At 68 kA, the ITER toroidal-field type HTS current leads will be the largest ever operated.
HTS current leads are key components of the ITER magnet system, transferring the large currents from room-temperature power supplies to very low-temperature superconducting coils at a minimal heat load to the cryogenic system. Although HTS current leads represent an additional cost over conventional current leads, this additional cost is quickly amortized due to savings in cryoplant operation.
ITER's largest magnets—18 toroidal  field coils, 6 central solenoid modules, 6 poloidal field coils, and 18 correction coils—will be supplied with 60 current leads, ranging from very large (68 kA for the toroidal-field type) to medium (10 kA for the correction-coil type), transferring up to 2.6 MA into and out of the cryogenic environment of the machine. Located at the far end of the magnet feeder relative to the machine (see diagram below) the current leads operate in much lower magnetic field than the magnet coils themselves.
The largest toroidal-field type of current lead is over 3 metres long and weighs 600 kgs.
The HTS current leads for the ITER Tokamak are procured by the Chinese Domestic Agency through the Institute of Plasma Physics (ASIPP) in Hefei. The Procurement Arrangement signed between the ITER Organization and the Chinese Domestic Agency for magnet feeders laid out a multi-year plan to develop the designs and to qualify the HTS lead manufacturing technology in ASIPP and its sub-suppliers Juneng and Keye.
Following the development of critical manufacturing technologies through targeted trials in mockups, Chinese contractors recorded a string of qualification milestones¹:
  • The successful testing of a pair of correction coil 10 kA current lead prototypes in March 2015;
  • The successful testing of a pair of toroidal-field type 68 kA current lead prototypes in July 2015;
  • The successful testing of a pair of poloidal-field/central-solenoid type current leads in 2016;
  • The completion of a Manufacturing Readiness Review in August 2016 (marking the end of the qualification phase).
Series manufacturing is now underway, and the first-of-series for all three types of HTS lead have been completed (see gallery). The fact that manufacturing is proceeding strongly, with only a small number of non-conformities, is a tribute to the thorough qualification efforts as well as the Chinese manufacturers' high level of expertise.

It should also be noted that the Chinese Domestic Agency and the ITER Organization put a supervision framework into place allowing local inspectors to witness critical manufacturing steps. Erwu Niu of the ITER China office now manages at least two inspectors who are permanently stationed at the suppliers' sites in Hefei.

Thousands of documents have already been uploaded to the ITER Organization Manufacturing Database—from material certificates, to personnel certificates and test reports. Documents attesting to the components' performance during testing—for example the final factory acceptance cold test in near-to operational conditions under full current—can be fully verified through the database before the final ITER Organization hold point is released.

At ASIPP, lead engineers Quan Han and Qingxiang Ran are now turning their attention to ramping up the pace of production to meet the ITER schedule. A number of additional pieces of large-scale manufacturing equipment—such as another electron-beam welding machine, insulation curing autoclaves and a third cold test station—are being commissioned to handle the extra load.

This year and next, up to 20 current lead pairs will be manufactured in parallel in by Juneng and Keye for shipment to ITER.

¹The qualification of the HTS current leads in China is summarized in an ITER Technical Report (Reference: ITR-18-001). You can download it on this page.

Europe concludes winding another ITER Poloidal Field coil

F4E News - do, 28/02/2019 - 01:00
F4E and its contractors speed up the manufacturing process on-site.

Vacuum leaks | A whole suite of tools and technologies

ITER - ma, 25/02/2019 - 21:24



The Greek philosopher Aristotle (384-322 BC) knew nothing about tokamaks. But when he stated in his famous aphorism that "Nature abhors a vacuum,"¹ he anticipated one of the problems that tokamak designers would face 25 centuries later.
Vacuum occupies a large part of ITER, both literally and figuratively—vacuum volumes are huge and vacuum challenges daunting. Successful plasma operation rests on the quality of the vacuum in the (aptly named) vacuum vessel, but also in the cryostat, the neutral beam injection system, and many other systems.
A vessel under vacuum is submitted to pressure from the external environment ... and the higher the vacuum, the more aggressive is the attack of particles from the environment and surfaces.
Gases and liquids will find the tiniest breach in a structure under vacuum. "A crack the width of a human hair is enough to alter the vacuum quality and halt fusion performance," emphasizes ITER Vacuum Section Leader Robert Pearce. Nature not only abhors a vacuum, it conspires by all available means to destroy it ...
Close to ten years ago, an intense R&D program was started to develop risk-mitigating concepts for leak detection and localization. The Procurement Arrangement that was recently signed between the European Domestic Agency, Fusion for Energy, and the ITER Organization is a direct outcome of this decade-long effort.
Under this agreement, Fusion for Energy will deliver a whole suite of ITER-designed systems and instruments to detect and localize leaks throughout the vast volumes of the vacuum vessel and cryostat, and also in smaller areas such as the neutral beam injectors or the cryopumping systems.
"Basically it's about ensuring the integrity and leak testing the totality of the machine: the 2,000 m³ of the vacuum vessel, the 8,500 m³ cryostat (pumping volumes);  the primary vacuum for the neutral beam, not to mention the tens of kilometres of piping carrying gases and fluids that could leak into these volumes," explains ITER Vacuum Section leader Robert Pearce.
Although the risk of leakage is minimized by design as well as best practices and quality control throughout the fabrication and assembly processes, it cannot be reduced to nil. "There should be no leaks," says Vacuum team member Liam Worth, "but experience tells us that if we achieve this it will be a 'miracle.' To date, all tokamaks, stellarators, particle accelerators, and other vacuum installations of large size and complexity have experienced a certain number of leaks."
Some leaks are "tolerable" but others are not. "There are thresholds," explains Liam. "We can cope with the thermal shield or magnet system leaking a minute quantity of helium into the cryostat. But a leak into the vacuum vessel, whether of air or water, starts to affect plasma performance as the size increases and so cannot be easily tolerated."
Once detected and localized, leaks can of course be fixed, generally by cutting, replacing, bypassing, or isolating the faulty part. In some cases it is relatively easy; in others—for example in the case of a leak occurring in one of the in-cryostat helium lines—it would be a "huge job" to repair, according to Liam.
Among the systems and tools to be procured by Fusion for Energy under the recent Procurement Arrangement is a spectacular device—a self-propelled "in-pipe inspection tool" that can wiggle its way into the smallest and most contorted piping networks (see video) and find its way deep into the cryostat.
Conceptualized by the ITER Organization and developed by Doosan Babcock in Scotland, the working prototype of the articulated tool can propel itself inside pipes no larger than 40 millimetres in diameter, move forward and backward, take a 90-degree turn and, thanks to a tiny video camera and built-in lighting system, provide high-resolution images (better than 0.01 mm) of potential cracks or faulty welds. The device, which is evocative of an ultraminiaturized freight train or an oversized, segmented tapeworm, is equipped with inflatable "bladders" that can isolate and locate leaks in precise sections.
Although basic in-pipe inspection tools are standard in industry for much larger pipes, the articulated tool is unique. "Nothing in the world can do what it does," says Liam. "It's reduced size means, for instance, that 100 percent of the thermal shield manifolds² are accessible for inspection and leak localization."
"With the exception of the drive mechanism, all the prototype tool's components, including motors, are off-the-shelf or slightly modified off-the-shelf," says Liam. "The concept design has been demonstrated but the tool can be significantly improved with the use of bespoke components that are smaller and lighter." This task of improvement will now pass to Fusion for Energy as part of the Procurement Arrangement.
"In the more distant future, with advances in material and electronic technologies, such a tool could be further miniaturized by a factor of 10 and provide an even more powerful tool for leak localization and repair for fusion devices and many others," concludes Pearce.
Achieving and maintaining the required vacuum in the ITER machine is an immense task that the Vacuum Team took on more than one decade ago. As ITER is now gearing up for assembly operations, the team is moving forward with a new set of tools and technologies that potentially enable the localization and detection of leaks smaller than the width of hair divided by one million.
¹-Aristotle couldn't have known that at the atomic scale, Nature—that is, the material world—is essentially made of ... vacuum.
²-A manifold is an arrangement of interconnected pipes. In the ITER thermal shield, the manifolds supply cryogens to the shield's panels.
Read a related story on the Fusion for Energy website.

Success for Inner-Vertical Target Tests

F4E News - do, 21/02/2019 - 01:00
Europe’s prototype sustains high heat fluxes.

On site | Drone survey on a perfect day

ITER - ma, 18/02/2019 - 18:15

There are days in winter when the skies over Provence are perfectly transparent. Snowy peaks 200 kilometres away appear close enough to be touched and farms, country roads and villages are all revealed in sharp detail.
A drone flying over the ITER site on such days captures every single iron bar, scaffolding tower, or embedded plate in the Tokamak Complex; every insulator in the electrical switchyard; and every component carefully wrapped in green plastic in the site's storage areas.
This new harvest of images from early February also reveals the broader setting of the ITER Project, among the rolling hills and plowed fields along the Durance River valley—a futuristic enclave in an unchanging environment.


GENROBOT- the software that Europe will use in its share of ITER Remote Handling systems

F4E News - ma, 18/02/2019 - 01:00
The application will plug and control several machines simultaneously.

IFMIF/EVEDA – Engineering and validation of equipment in progress

F4E News - ma, 11/02/2019 - 01:00
The experimental facility hosting the world’s longest Radio Frequency Quadrupole (RFQ) accelerator prepares for upgrades.

IFMIF/EVEDA – Engineering and validation of equipment in progress

F4E News - ma, 11/02/2019 - 01:00
The experimental facility hosting the world’s longest Radio Frequency Quadrupole (RFQ) accelerator prepares for upgrades.

A new dawn rises on the ITER construction site

F4E News - do, 07/02/2019 - 01:00
The crown and bioshield of the Tokamak building are completed. More facilities are ready to receive equipment.

A new dawn rises on the ITER construction site

F4E News - do, 07/02/2019 - 01:00
The crown and bioshield of the Tokamak building are completed. More facilities are ready to receive equipment.

Chairman of European Parliament Budget Committee visits the ITER Site

F4E Events - wo, 06/02/2019 - 01:00
Jean Arthuis expresses his admiration for the project

Chairman of European Parliament Budget Committee visits the ITER Site

F4E Events - wo, 06/02/2019 - 01:00
Jean Arthuis expresses his admiration for the project

WEST invites East to its control room

F4E News - ma, 04/02/2019 - 01:00
Experts from Europe and Japan follow in real time plasma experiment performed 9620 km away.

WEST invites East to its control room

F4E News - ma, 04/02/2019 - 01:00
Experts from Europe and Japan follow in real time plasma experiment performed 9620 km away.

Steady at the helm | Bernard Bigot accepts a second term

ITER - ma, 28/01/2019 - 18:04


In a unanimous decision, the ITER Council has voted to reappoint Dr Bernard Bigot to a second five-year term as Director-General of the ITER Organization. The Council decision centred on two factors: the strong performance of the project in recent years under Dr Bigot's leadership, and the complex challenges that lie ahead as construction completes, massive tokamak components arrive onsite, and the stringent, carefully sequenced assembly and installation schedule kicks off in 2020.
Stakeholders internal and external have welcomed the announcement as a signal from both the Council and Bigot himself of the intent to ensure reliability and continuity for the demanding days that lie ahead.
In 2013, two years before Dr Bigot took the helm of the ITER Project, a report from the biennial Management Assessment had issued a warning: change course or risk project failure. By March 2015, the project was clearly at risk. The staggering complexity of the machine itself—compounded by the intricate international Procurement Arrangements under which companies on three continents would fabricate ITER's first-of-a-kind components—was taking its toll.
The rigour with which the new Director-General set about organizational reform showed that he understood both the high stakes involved and the structural changes needed. The central dilemma was daunting: how to ramp up the pace of construction and manufacturing at the same time as the project was undergoing exhaustive internal and external reviews of ITER's design, engineering, schedule, and cost—and all the while driving a revolution in project culture.
The results have been significant. Physical progress on every front has been matched by renewed optimism across the project. Once-sceptical stakeholders have been reassured. The project recently reached 60% completion through First Plasma in 2025.
Success, however, is not a one-man feat. Dr Bigot frequently reiterates the importance of teamwork and individual accountability at all levels. In his message last week to ITER staff and the seven ITER Members, announcing his acceptance of a second term, he set a familiar tone: "... the most important person for the success of the ITER Project is not the ITER Organization Director-General, but each of you, each of the stakeholders, each of our contractors and suppliers, each of us."
Read the press release in English or French.

Pagina's